6,082 research outputs found

    Stranded Structure Development in Thermally Produced Protein Concentrate Gel

    Get PDF
    Scanning electron micrographs of thermally induced whey protein concentrate gels were taken. Sample preparation was accomplished by glutaraldehyde fixation, osmium tetroxide post fixation and critical point dehydration. Stranded or beaded gel structures were observed on the external surface of a gas bubble, suggesting that a string-of-beads gel microstructure may result from bubble formation during thermal treatment

    Efficient nonlinear room-temperature spin injection from ferromagnets into semiconductors through a modified Schottky barrier

    Full text link
    We suggest a consistent microscopic theory of spin injection from a ferromagnet (FM) into a semiconductor (S). It describes tunneling and emission of electrons through modified FM-S Schottky barrier with an ultrathin heavily doped interfacial S layer . We calculate nonlinear spin-selective properties of such a reverse-biased FM-S junction, its nonlinear I-V characteristic, current saturation, and spin accumulation in S. We show that the spin polarization of current, spin density, and penetration length increase with the total current until saturation. We find conditions for most efficient spin injection, which are opposite to the results of previous works, since the present theory suggests using a lightly doped resistive semiconductor. It is shown that the maximal spin polarizations of current and electrons (spin accumulation) can approach 100% at room temperatures and low current density in a nondegenerate high-resistance semiconductor.Comment: 7 pages, 2 figures; provides detailed comparison with earlier works on spin injectio

    Head-on collisions of binary white dwarf--neutron stars: Simulations in full general relativity

    Full text link
    We simulate head-on collisions from rest at large separation of binary white dwarf -- neutron stars (WDNSs) in full general relativity. Our study serves as a prelude to our analysis of the circular binary WDNS problem. We focus on compact binaries whose total mass exceeds the maximum mass that a cold degenerate star can support, and our goal is to determine the fate of such systems. A fully general relativistic hydrodynamic computation of a realistic WDNS head-on collision is prohibitive due to the large range of dynamical time scales and length scales involved. For this reason, we construct an equation of state (EOS) which captures the main physical features of NSs while, at the same time, scales down the size of WDs. We call these scaled-down WD models "pseudo-WDs (pWDs)". Using pWDs, we can study these systems via a sequence of simulations where the size of the pWD gradually increases toward the realistic case. We perform two sets of simulations; One set studies the effects of the NS mass on the final outcome, when the pWD is kept fixed. The other set studies the effect of the pWD compaction on the final outcome, when the pWD mass and the NS are kept fixed. All simulations show that 14%-18% of the initial total rest mass escapes to infinity. All remnant masses still exceed the maximum rest mass that our cold EOS can support (1.92 solar masses), but no case leads to prompt collapse to a black hole. This outcome arises because the final configurations are hot. All cases settle into spherical, quasiequilibrium configurations consisting of a cold NS core surrounded by a hot mantle, resembling Thorne-Zytkow objects. Extrapolating our results to realistic WD compactions, we predict that the likely outcome of a head-on collision of a realistic, massive WDNS system will be the formation of a quasiequilibrium Thorne-Zytkow-like object.Comment: 24 pages, 14 figures, matches PRD published version, tests of HRSC schemes with piecewise polytropes adde

    Evaluating quasilocal energy and solving optimal embedding equation at null infinity

    Full text link
    We study the limit of quasilocal energy defined in [7] and [8] for a family of spacelike 2-surfaces approaching null infinity of an asymptotically flat spacetime. It is shown that Lorentzian symmetry is recovered and an energy-momentum 4-vector is obtained. In particular, the result is consistent with the Bondi-Sachs energy-momentum at a retarded time. The quasilocal mass in [7] and [8] is defined by minimizing quasilocal energy among admissible isometric embeddings and observers. The solvability of the Euler-Lagrange equation for this variational problem is also discussed in both the asymptotically flat and asymptotically null cases. Assuming analyticity, the equation can be solved and the solution is locally minimizing in all orders. In particular, this produces an optimal reference hypersurface in the Minkowski space for the spatial or null exterior region of an asymptotically flat spacetime.Comment: 22 page

    The microcanonical ensemble of the ideal relativistic quantum gas with angular momentum conservation

    Get PDF
    We derive the microcanonical partition function of the ideal relativistic quantum gas with fixed intrinsic angular momentum as an expansion over fixed multiplicities. We developed a group theoretical approach by generalizing known projection techniques to the Poincare' group. Our calculation is carried out in a quantum field framework and applies to particles with any spin. It extends known results in literature in that it does not introduce any large volume approximation and it takes particle spin fully into account. We provide expressions of the microcanonical partition function at fixed multiplicities in the limiting classical case of large volumes and large angular momenta and in the grand-canonical ensemble. We also derive the microcanonical partition function of the ideal relativistic quantum gas with fixed parity.Comment: 38 pages; minor corrections to the formulae for the published versio

    Spectral perturbation by rank-mm matrices

    Full text link
    Let AA and BB designate n×nn\times n matrices with coefficients in a field FF. In this paper, we completely answer the following question: For AA fixed, what are the possible characteristic polynomials of A+BA+B, where BB ranges over matrices of rank m\le m?Comment: Comments are welcom

    Discrete Symmetries in the Weyl Expansion for Quantum Billiards

    Full text link
    We consider two and three-dimensional quantum billiards with discrete symmetries. We derive the first terms of the Weyl expansion for the level density projected onto the irreducible representations of the symmetry group. As an illustration the method is applied to the icosahedral billiard. The paper was published in J. Phys. A /27/ (1994) 4317-4323Comment: 8 printed pages Latex fil

    Electron surface layer at the interface of a plasma and a dielectric wall

    Full text link
    We study the potential and the charge distribution across the interface of a plasma and a dielectric wall. For this purpose, the charge bound to the wall is modelled as a quasi-stationary electron surface layer which satisfies Poisson's equation and minimizes the grand canonical potential of the wall-thermalized excess electrons constituting the wall charge. Based on an effective model for a graded interface taking into account the image potential and the offset of the conduction band to the potential just outside the dielectric, we specifically calculate the potential and the electron distribution for magnesium oxide, silicon dioxide and sapphire surfaces in contact with a helium discharge. Depending on the electron affinity of the surface, we find two vastly different behaviors. For negative electron affinity, electrons do not penetrate into the wall and an external surface charge is formed in the image potential, while for positive electron affinity, electrons penetrate into the wall and a space charge layer develops in the interior of the dielectric. We also investigate how the electron surface layer merges with the bulk of the dielectric.Comment: 15 pages, 9 figures, accepted versio

    Properties of the symplectic structure of General Relativity for spatially bounded spacetime regions

    Full text link
    We continue a previous analysis of the covariant Hamiltonian symplectic structure of General Relativity for spatially bounded regions of spacetime. To allow for near complete generality, the Hamiltonian is formulated using any fixed hypersurface, with a boundary given by a closed spacelike 2-surface. A main result is that we obtain Hamiltonians associated to Dirichlet and Neumann boundary conditions on the gravitational field coupled to matter sources, in particular a Klein-Gordon field, an electromagnetic field, and a set of Yang-Mills-Higgs fields. The Hamiltonians are given by a covariant form of the Arnowitt-Deser-Misner Hamiltonian modified by a surface integral term that depends on the particular boundary conditions. The general form of this surface integral involves an underlying ``energy-momentum'' vector in the spacetime tangent space at the spatial boundary 2-surface. We give examples of the resulting Dirichlet and Neumann vectors for topologically spherical 2-surfaces in Minkowski spacetime, spherically symmetric spacetimes, and stationary axisymmetric spacetimes. Moreover, we show the relation between these vectors and the ADM energy-momentum vector for a 2-surface taken in a limit to be spatial infinity in asymptotically flat spacetimes. We also discuss the geometrical properties of the Dirichlet and Neumann vectors and obtain several striking results relating these vectors to the mean curvature and normal curvature connection of the 2-surface. Most significantly, the part of the Dirichlet vector normal to the 2-surface depends only the spacetime metric at this surface and thereby defines a geometrical normal vector field on the 2-surface. Properties and examples of this normal vector are discussed.Comment: 46 pages; minor errata corrected in Eqs. (3.15), (3.24), (4.37) and in discussion of examples in sections IV B,
    corecore